首页 > 版块 > 霍尔 > 帖子正文

转子位置传感器之霍尔磁敏传感器介绍

赵云 发布于 2021-10-28 13:43
收藏 1 回复 0 浏览 233 原创

大家好,我是张飞实战电子的赵云老师,今天我们来介绍转子位置传感器之霍尔磁敏传感器。

一、转子位置传感器概述:

转子位置传感器在无刷直流永磁电动机中,主要起两个作用:

    一、通过它检测出转子永磁体磁极相对定子电枢绕组所处的位置,以便确定电子换相驱动电路中功率晶体管的导通顺序;

    二、确定电子换相电路驱动电路中功率晶体管的导通角,从而确定电枢磁场的磁状态。

为了实现这两个目的,工程上可以采用无接触式旋转变压器、光电式传感器、高频耦合式传感器、磁阻元件传感器和霍尔磁敏传感器等。不同的传感器,有不同的特点和不同的应用场合。

1.png 

无接触式旋转变压器和霍尔磁敏传感器是目前被广泛采用的两种转子位置传感器。无接触式旋转变压器除了结构复杂、体积较大和制造成本较高等缺点外,它具有安装定位方便、输出信号大、精度高、对环境条件要求不严、温度适应范围宽、工作稳定可靠,以及容易与电子换向电路的输入阻抗实现阻抗匹配等一系列优点。因此,旋转变压器被广泛地用于精密数控机床、军事装备和宇航技术领域之中。

霍尔磁敏传感器在具有质量轻、尺寸小、制造成本低和便于大规模生产等优点的同时,存在着对环境条件要求严、温度适应范围窄和可靠性差等缺点。因此,霍尔磁敏传感器被广泛地用于计算机的软硬盘驱动器、激光打印机、视听设备和家用电器等民用电动机产品中。

、霍尔效应:

当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。霍尔效应使用左手定则判断。

2.png 

图一:霍尔效应示意图

3.png 

图二:霍尔效应示意图

 

三、霍尔器件分类:

(1)按结构分类

霍尔器件按结构可以分为三大类∶霍尔元件、霍尔集成电路和霍尔功能组件。一般而言,霍尔器件是由单独半导体霍尔区构成的分立电子元件,它所产生的电动势很低,在使用时还需要外接放大器,很不方便。随着微电子技术的发展,借助半导体制作工艺将半导体霍尔区及其所需的外周功能电路一起制作在同一块硅外延片上,这就构成了霍尔集成电路和霍尔功能组件。

(2)按功能分类

霍尔器件按功能也可以分为三大类∶线性型、开关型和锁定型。

线性型霍尔器件由电压调节器、霍尔元件、差分放大器和输出级所组成,其结构框图如下图所示。

4.png 

图三:线性霍尔器件结构框图

线性型霍尔器件的输入量是磁感应强度,输出量是电压。输出量与输入量成直线性函数关系,如下图所示。线性型霍尔器件主要用于测量,可制成用来测量各种物理量,例如,磁通、磁通密度、电压、电流、功率、频率、相位移、电磁转矩、直线位移、角度、振动、转速、流量和压力等物理量的仪表。

5.png 

图四:线性霍尔器件的输出特性

开关型霍尔器件由电压调节器、霍尔元件、差分放大器、施密特触发器和输出级等五部分所组成,如图五所示。它的输入量是磁感应强度,输出量是高低电平的数字信号。在正磁场作用之下的开关型霍尔器件的特性曲线如图六所示。所谓正磁场是指磁体的南极 S 指向霍尔器件商标面的磁场;反之,所谓负磁场是指磁体的北极N 指向霍尔器件商标面的磁场。对于开关型霍尔器件而言,当磁感应强度由零开始增大到达某一数值 Bop 时,霍尔器件开通,输出低电平,横坐标上对应 Bop的点被称之为"磁工作点"。当磁感应强度从"磁工作点"开始继续增大时,霍尔器件一直保持开通状态,即一直输出低电平;当磁感应强度由一个大于 Bop 的数值开始减小返回时,在磁感应强度减小返回到达"磁工作点"数值的情况下,霍尔器件仍然保持开通状态,输出低电平; 只有当磁感应强度减小至某一数值 BrP时,霍尔器件才关闭,输出高电平,横坐标上对应 BrP的点被称之为"磁释放点"。磁工作点与磁释放点之差,即数值(Bop-Brp=BHYS 被称之为开关型霍尔器件的"磁滞区"。不同设计的开关型霍尔器件具有不同的磁滞区BHYS,外加磁场的大小不会改变某一开关型霍尔器件的磁滞区的数值大小。开关型霍尔器件的磁滞回线相对于零磁场纵坐标轴是不对称的,它的导通和截止过程只和外界磁场的大小有关,不需要磁场极性的变换。图六给出了开关型霍尔器件在交变磁场作用之下的输出特性。

6.png 

图五:开关型或锁存型霍尔器件结构框图

7.png 

图六:开关型霍尔器件的输出特性曲线示意

锁存型霍尔器件同样也是由电压调节器、霍尔元件、差分放大器、施密特触发器和输出级等五部分所组成。锁存型霍尔器件实质上也一种开关型霍尔器件,它与一般开关型霍尔器件的差别在于∶它是由双磁极激发的,其输出特性曲线如下图所示。由图可见,锁存型霍尔器件的输出特性曲线相对于零磁场纵坐标轴是对称的,因此在交变磁场的作用之下可以获得占空比为11的输出波形,如下图七所示,且不受外界温度和交变磁场峰值大小的影响。

8.png 

图七:锁存型霍尔器件的输出特性曲线示意

锁存型霍尔器件的基本工作过程是,当外加磁场方向为正时,差分放大器的输出电压为正,并作为施密特触发器的触发信号。差分放大器的输出电压随着外加磁感应强度的增强而增加,当达到施密特触发器的导通电压阈值时,电路的输出V。由高电平变为低电平。由于触发器的导通和截止的电压阈值被设计成对称的,所以当外加磁感应强度减弱时,触发器仍保持导通状态∶只有当改变磁体的极性并达到一定强度,致使差分放大器输出的负触发信号达到施密特触发器的截止电压阈值时,触发器才由导通突变为截止。因此,磁体的极性每变换一次,锁存型霍尔器件的输出就完成一次开关转换,这种特性特别适用于在无刷直流永磁电动机中作转子位置的传感器件。

四、霍尔器件的空间配置:

传感器定子上的霍尔器件的数目和配置方法取决于∶ 电动机本体的相数m、磁极对数p、电枢绕组、逻辑信号处理电路、换向电路、电动机运行时的磁状态角az和逆变电路中功率开关器件的导通角ai等。归结起来,传感器定子上的霍尔器件的数目和配置必须满足以下两个条件

1)霍尔器件在电动机的一个电周转内所产生的开关状态是不能重复的,每一个开关状态所占的电角度应相等;

2)霍尔器件在电动机的一个电周转内所产生的开关状态数应和该电动机的磁状态数相对应。

锁存型霍尔器件是一个仅有"0""1"两种状态的双值器件。一个双值器件有两种状态,二个双值器件有四种状态,n个双值器件有 2"种状态。根据上述原则,对于最常见的"二相导通星形三相六状态"的电动机而言,一般采用三个霍尔器件,它们在圆周空间的配置有两个方案∶ 相互间隔 60°电角或相互间隔 120°电角。两种方案的输出波形组合图分别如下图所示:

9.png 

图八:60度电角度安装霍尔波形及输出状态

10.png 

图九:120度电角度安装霍尔波形及输出状态

对于"一相导通星形三相三状态"的电动机而言,至少要两个霍尔器件,然后借助逻辑电路把两个霍尔器件的四种状态处理成相互间隔 120°电角的三个状态;在此情况下,也可以采用三个霍尔器件,然后借助逻辑电路把三个霍尔器件的六种状态处理成相互间隔 120°电角的三个状态。

综上所述,对于"一相导通星形三相三状态""二相导通星形三相六状态"的电动机而言,其霍尔器件的数目和配置方法如图所示。

11.png 

图十:霍尔器件数目和相邻两霍尔器件之间的夹角


0 1
发表评论 侵权投诉
评论 (0)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表乌云踏雪网立场。

文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题,请联系本站作侵删。