首页 > 版块 > 电路设计 > 帖子正文

放大电路设计1-纯硬件实现风机驱动简述

郭嘉 发布于 2021-10-27 13:36
收藏 0 回复 0 浏览 44 原创

用分立器件搭建的输出12V“高压Buck降压电源”作为风机控制器低压部分提供电源,输入为市电,输出功率50W,效率>90%电机的母线电压是DC310V。该项目与“分立器件搭建的Buck降压电源”相比增加了很多功能,还要实现H桥驱动电机电路,无疑该项目难度比“分立器件搭建的Buck降压电源”难度大。

在该项目中,本人担任设计工程师,主要负责风机控制器的硬件开发工作。

针对该项目的设计需求,本人在原有的“分立器件搭建的Buck降压电源”项目设计方案上进行了创新,创新点如下:

1)设计一个高压AC220V输入的单相50W直流无刷电机纯硬件驱动器。电机有一路霍尔信号位置反馈,驱动器的输入是交流220V和电机的霍尔信号。霍尔信号反应转子的位置信息。驱动器输出就是H桥开关管按照霍尔信号的高低电平进行不同形式的开关组合,从而使电机定子产生不同的磁场来带动转子转

动。电机按照这两种控制就可以产生不同方向的定子磁场,那么我们可以根据不同的霍尔信号进行不同的开关管控制,从而控制磁场,使电机转起来.

控制器的主要单元电路:

1)电源模块。

2)调速模块。

3)驱动模块。

4)H桥模块。

5)霍尔模块。

6)过流保护模块。

7)软启动模块。

2纯硬件电路实现驱动电机技术Buck降压电源仅仅是驱动电感,控制功率电感充电和放电,使输出稳定的12V电压和最大2A的电流,就可以满足项目需求。为了能够达到H桥电机驱动电路,用单MOSFET方案很难达到设计指标。本人在方案上采用了H桥四个桥臂的驱动方案,使用四个MOSFET实现驱动电机。常用的H桥控制电路缺点比较多,不能保证风机长时间、高温下运行。但是本人对H桥控制电路进行了创新,本项目采用的是另外一种H桥控制电路方式:驱动MOSFET电路增加了恒流源电机霍尔传感器,上下桥臂死区控制方式等等。该方式的优点是:上下桥MOSFET不会直通串红MOSFET的栅极米勒效应干扰大大减小保证了电机平稳的运行

3纯硬件电路实现的PWM控制电机技术刚开始利用霍尔输出驱动电机启动通过比较器设计的三角波转PWM,调控MOSFET栅极的占空比或频率来实现调速,实现霍尔输出和PWM共同调控电机,减小电机抖动,电机运行更平稳。

4)高压小电流2层PCB layout技术:考虑到了风机控制器电输入电压大,对驱动管MOSFET驱动信号抗干扰性能要求较高,dV/dt斜率不能太大。在PCB设计中本人采用了2,进行PCB layout的设计。2层电路板分为高压部分和低压部分,由于器件比较多PCB layout器件密度大、布局比较难等特点。但是注意安规(电气间隙、爬电距离等等)、合理的布局、合理的PCB layout,最终还是解决这个难题。

本人在控制器原理图设计layout器件选型等设计中,把上面的创新点运用到产品中,经过本人亲自理论计算、Multisim的仿真调试试验等追踪控制器最终产满足了客户要求。本款控制器研发成功,攻克了公司多年来对高压大电流控制器的技术难,为公司带来了好的声誉,关键技术指标,在业界也是处于领先地位

图片 1.png


比较器电路搭建的PWM信号发生器


0 0
发表评论 侵权投诉
评论 (0)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表乌云踏雪网立场。

文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题,请联系本站作侵删。